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The existence of two-dimensional flows with an isotropic and negative eddy viscosity 
is demonstrated. Such flows, when subject to a very weak large-scale perturbation of 
wavenumber k will amplify it with a rate proportional to k2, independent of the 
direction. 

Specifically, it is assumed that the basic (unperturbed) flow is space-time periodic, 
possesses a centre of symmetry (parity-invariance) and has three- or six-fold rotational 
invariance to ensure isotropy of the eddy-viscosity tensor. 

The eddy viscosities emerging from the multiscale analysis are calculated by two 
different methods. First, there is an expansion in powers of the Reynolds number which 
can be carried out to large orders, and then extended analytically (thanks to a 
meromorphy property) beyond the disk of convergence. Secondly, there is a spectral 
method. The two methods typically agree within a fraction of 1 %. 

A simple example, the ‘decorated hexagonal flow’, of a time-independent flow with 
isotropic negative eddy viscosity is given. Flows with randomly chosen Fourier 
components and the required symmetry have typically a 30 % chance of developing a 
negative eddy viscosity when the Reynolds number is increased. 

For basic flow driven by a prescribed external force and sufficiently strong large- 
scale flow, the analysis is extended to the nonlinear regime. It is found that the large- 
scale dynamics is governed by a Navier-Stokes or a Navier-Stokes-Kuramoto- 
Sivashinsky equation, depending on the sign and strength of the eddy viscosity. 
When the driving force is not mirror-symmetric, a new ‘chiral’ nonlinearity appears. 
In special cases, the large-scale equation reduces to the Burgers equation. With chiral 
forcing, circular vortex patches are strongly enhanced or attenuated, depending on 
their cyclonicity. 

1. Introduction 
Eddy- transport coefficients, as used here, characterize the way a given basic flow, 

spatially periodic (cellular flow), responds to a weak large-scale perturbation. 
A well-known instance is the addition of a passive scalar advected by the basic flow 

and subject to molecular diffusion. If the basic flow has enough symmetry (e.g. square 
symmetry in two dimensions), the large-scale behaviour of the cell-averaged scalar 
concentration is governed by a diffusion equation. The eddy-diffusivity is positive; 
otherwise, the maximum principle which holds for any advectionTdiffusion equation 
would be violated. 

The concept of eddy viscosity arises when the large-scale perturbation affects the 
4-2 
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distribution of momentum and vorticity within the basic flow. The governing equation 
is the linearized Navier-Stokes equation. Because of the interplay of momentum and 
vorticity perturbations, the latter never reduces to an advection-diffusion equation, 
even in two dimensions where the vorticity is a scalar. As a consequence, a large-scale 
momentum gradient may produce a cell-averaged momentum flux which is in the same 
direction as the gradient, rather than opposite to it. Such flow displays a large-scale 
instability with growth rate proportional to the square of the wavenumber. It is 
traditional to refer to such flow as having negative eddy viscosity (Starr 1968; 
Kraichnan 1976). The best known example is the two-dimensional Kolmogorov flow 
with stream function Y = cos xl. Its eddy viscosity for large-scale perturbations 
transverse to the basic flow is given by 

vE = v- 1/(2v), (1) 

which becomes negative when v < 2 d  (Meshalkin & Sinai 1961 ; Nepomnyashchy 
1976; Sivashinsky 1985; Dubrulle & Frisch 1991; HCnon & Scholl 1991). 

Negative eddy viscosity has been invoked many times as a possible explanation of 
common instabilities in astrophysical and geophysical flow, among them the differential 
rotation of the Sun (see e.g. Rudiger 1989). Note that, in general, the eddy viscosity is 
a fourth-order tensor, as needed to linearly relate the large scale velocity gradient and 
the ensuing momentum flux. Kraichnan (1976) derived the expression for the eddy 
viscosity within a closure framework and obtained negative values in two dimensions. 
He then used this result to interpret the reverse flow of energy in the inverse cascade 
of two-dimensional turbulence. 

As is now known, there is no need to resort to closure to calculate eddy viscosities, 
since the latter can be calculated by multiscale techniques, developed by Nepom- 
nyashchy (1976), Sivashinsky (1985), and others for the two-dimensional case and 
extended by Dubrulle & Frisch (1991, referred to herein as DF) to higher dimensions. 
Such methods indeed give the exact value of the eddy-transport coefficients. However, 
they require the solution of auxiliary problems having analytical solutions only in 
special cases, for example when the basic flow is layered, i.e. depending on a single 
space-coordinate (DF). This is why the only flows known for certain to possess a 
negative eddy viscosity are highly anisotropic. 

It was an open problem if two-dimensional flows exist having an isotropic eddy 
viscosity which is negative. This question was recently addressed by Sivashinsky & 
Frenkel (1992) who considered low-Reynolds-number flow and showed that the first 
correction to the molecular viscosity (in powers of the Reynolds number) can be 
negative when the basic flow is time-dependent. (DF had shown that this is ruled out 
for time-independent flow.) As Sivashinsky & Frenkel(l992) pointed out, one cannot 
be certain that, at some finite Reynolds numbers, the reduction of the eddy viscosity 
may become prominent enough to make it negative. 

In a recent note (Vergassola, Gama & Frisch 1993), we have briefly demonstrated 
the existence of at least one deterministic time-independent, space-periodic flow, which 
has an isotropic eddy viscosity above some critical Reynolds number. The present paper 
has a considerably broader scope and is organized as follows. In $2 we formulate our 
problem and discuss the basic symmetries (parity, isotropy, chirality) which will be of 
importance for our studies. In $ 3  we present the multiscale technique needed to derive 
the eddy viscosity. Section 4 is devoted to two general methods for calculating the 
eddy-viscosity tensor of a given flow. First, in $4.1, we present a method based on the 
analytic continuation by Pad6 approximants of series giving the eddy viscosity in 
powers of the Reynolds number. Then, in $4.2, we present a numerical strategy based 
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on (pseudo-) spectral numerical solutions of the auxiliary problems generated in the 
multiscale expansion. In $5 5-7, we specialize to flows having enough rotational 
symmetry to make the eddy viscosity isotropic. We first study a time-independent flow 
with a single wavenumber, closely related to the one considered by Sivashinsky & 
Yakhot (1984), the eddy viscosity of which is shown to be always positive ($5.1). We 
then turn to a three-wavenumber flow, the ‘decorated hexagonal flow’, which is the 
first known instance of isotropic negative eddy viscosity ($5.2). In $6, we address the 
question of how common the phenomenon of negative eddy viscosity is when the basic 
flow has randomly selected Fourier components. Section 7 is devoted to time- 
dependent basic flows. We first give finite-Reynolds-numbers results for the 
deterministic Sivashinsky & Frenkel(l992) flow. Then, in $7.1, we consider the case of 
random flows which are &correlated in time. 

In the next two Sections we address the question of the nonlinear dynamics of large- 
scale flow, a problem that is of particular relevance when there is an instability of 
negative eddy viscosity. For the linear theory, it was sufficient to prescribe the basic 
flow subject to the large-scale perturbation. For the nonlinear theory, we must specify 
how the basic flow is maintained. The simplest way to maintain cellular flow is through 
a prescribed external force which is a function of space and time, independent of the 
velocity. 

Experimentally, two-dimensional flow subject to such forcing can be realized by a 
spatially periodic varying magnetic field acting on a thin layer of an electrolyte 
(Bondarenko, Gak & Dolzhansky 1979). Alternatively, a uniform magnetic field can be 
used in combination with an array of current-injecting electrodes to produce a wide 
range of spatial and temporal modulations, as shown by Sommeria (1986) who also 
checked quantitatively that the governing equation is the two-dimensional Navier- 
Stokes equations with an additional friction term proportional to the velocity. The 
latter stems from bottom friction. Sommeria showed that the friction term can be made 
sufficiently small to affect only the very largest scales by using appropriate experimental 
parameters. As a consequence, features such as flow symmetry and negative eddy 
viscosity are mostly unaffected. 

The Sections devoted to the nonlinear large-scale dynamics are organized as follows. 
First, in $ 8, we consider forcing possessing mirror-symmetry (non-chiral) and handle 
successively the cases of positive eddy viscosity ($8.1) and marginally negative eddy 
viscosity (98.2). The latter, leads to the Navier-Stokes-Kuramoto-Sivashinsky 
equation, the properties of which will be recalled briefly. Indeed, it has been 
investigated numerically in detail by Gama, Frisch & Scholl (1991) at a time when it 
was only conjectured that there exists flow with isotropic and negative eddy viscosity. 
Chiral forcing, already briefly discussed by Vergassola (1993), leads to surprisingly 
novel large-scale dynamics discussed in $9. 

Concluding remarks are presented in $10. In the main body of the paper the 
emphasis is on concepts and results. Technical details are presented in five Appendices. 

2. Formulation and symmetries 
In this paper we are investigating two-dimensional incompressible flow subject to 

external forcing. The general D-dimensional case was considered in DF. In the two- 
dimensional case, the formalism can be made more compact, using a stream-function 
representation as in Nepomnyashchy (1976), Sivashinsky & Yakhot (1984) and 
Sivashinsky & Frenkel (1992). The velocity field u = (u,) is written as 
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ui = cij aj Y, i = 1,2. (2) 

Here, cij is the fundamental antisymmetric tensor (e12 = -ezl = 1, zero otherwise) and 
aj stands for alax,. 

The Navier-Stokes equation for the basic f low reads 

a , a 2 y + J ( a y  y) = va2a2y-&ijaih. (3) 

Here, a2 is the Laplacian, JV;g)  = c,(aif)(ajg) is the Jacobian, v is the (kinematic 
molecular) viscosity andf=  (A) is the external force. 

We shall assume that the basic flow Y is a prescribed function, periodic in x,, 
x2 and t .  The periods in x1 and x2 need not be the same. The forcefis chosen in such 
a way as to balance (3) and thus will be a function of the viscosity, when the latter is 
varied. Whether the basic flow or the external force is prescribed makes no difference 
in the linear theory, but matters in the nonlinear case. Studies of the Kolmogorov flow 
usually assume that the basic flow rather than the force is prescribed, as we shall here 
assume. One thereby avoids questions about non-uniqueness of the basic flow, 
questions which are of interest, but are only weakly connected with the main thrust of 
this paper. We shall also assume that the basic flow is stable with respect to small 
perturbations having the same spatial periodicity since, again, small-scale instabilities 
are not our concern. This condition is satisfied when the Reynolds number for the basic 
flow is small enough. The latter is defined as 

R = ( ! P ) ~ / v .  (4) 

(Note that Y has the dimension [length] x [velocity].) 
We also assume that 

( u )  = ( f )  = 0. ( 5 )  

Here, the mean value ( - ) denotes the average over the space and time periodicities. 
Condition (5) is no real restriction, since it can be satisfied by performing a suitable 
Galilean transformation. 

The restrictive hypothesis of periodicity is made mostly for simplicity. The case of 
random homogeneous stationary flow with rapidly decreasing correlations (mixing) 
can be handled in principle by the same method with minor modifications at the formal 
level (angular brackets being then reinterpreted as ensemble averages). An example will 
be found in 6 7.1. 

We now formulate the problem of the large-scale perturbation. Let us replace in the 
Navier-Stokes equation (3) the basic flow Y by Y+$, where $, the large-scale 
perturbation, is not restricted to having any spatial periodicity. The perturbation @ is 
taken to be 'small'. How small exactly is a question we shall return to at length. Since 
Y satisfies the Navier-Stokes equation, @ satisfies an equation in which the force drops 
out: 

a, + J(a2Y, $) + J(a2$, y) + J(a2$, $) = v a2 a'$. (6) 
When the large-scale perturbation is sufficiently weak, the nonlinear term J(a2$, $) is 
negligible and we simply obtain for @ the linearized Navier-Stokes equation. Sections 
3-7 will deal with the linear theory, for which it is irrelevant how the basic flow is 
maintained. 

Let us denote by $(O) the large-scale component of the perturbation. (Precise 
definitions justifying this notation will be given later.) A gradient expansion in the spirit 
of Moffatt (1974) indicates that the large-scale equation will have the form 
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The third-order tensor aijl is called the AKA tensor (Frisch, She & Sulem 19873; 
Sulem et al. 1989). It vanishes when the basic flow is parity-inuariant, i.e. has a centre 
of symmetry. If the latter is taken as origin, this means that the basic stream function 
!P satisfies 

Y( -x, t )  = Y(x,  t). (8) 

Here, parity-invariance will be assumed because it is the most general condition 
which guarantees the absence of AKA-type tensors. In two dimensions the AKA-effect 
can only lead to dispersion (an immediate consequence of (7)) and is thus less 
interesting than in three dimensions where instabilities are permitted. 

In DF it was shown that the large-scale dynamics for weak perturbations of parity- 
invariant flow is indeed of the form (7), with no aiil terms. The most general anisotropic 
case contains a fourth-order eddy-viscosity tensor vijlm (Krause & Rudiger 1974). Since 
the vtizm tensor is contracted with four a’s, it may without loss of generality be 
completely symmetrized in its four indices. If the basic flow is random and isotropic a 
scalar eddy viscosity will of course be obtained, i.e. 

Viilrn = V E  sij szm. (9) 

The coefficient vE is then simply called the ‘eddy viscosity’. Note that we do include 
the molecular contribution in our definition of vE. 

Deterministic flow, as used here, cannot be invariant under rotations (unless it 
vanishes). Still, it is well known in crystallography (Landau & Lifshitz 1970) and in the 
theory of lattice gases (Frisch, Hasslacher & Pomeau 1986a; Frisch et al. 1987a) that 
six-fold (sixty degree) rotational invariance ensures isotropy of certain tensors up to the 
fourth order. Such tensors have to be at least symmetric under exchanges of two pairs 
of indices. For completely symmetrical tensors, three-fold rotational symmetry is 
enough for isotropy. This is why there will be considerable emphasis on such symmetry 
in this paper. 

Another symmetry which will turn out to be important in the nonlinear theory is 
mirror symmetry, i.e. symmetry with respect to an axis. Taking this axis to be in the x, 
direction, mirror symmetry is expressed as 

(10) v - x,, x,, t> = - !P(x,, x,, 9. 
For an example of a mirror-symmetric flow which is not parity-invariant (no centre of 
symmetry), see figure 5. For an example of a parity-invariant flow which is chiral (no 
axis of symmetry), see figure 3. It is easily checked that mirror-symmetry is dynarnical, 
i.e. compatible with the Navier-Stokes equation in the absence of a force, or when the 
force itself is mirror-symmetric. Flows which do not possess mirror symmetry are said 
to be chiral. As we shall see, this matters only for the nonlinear theory. 

Finally, it will be useful to consider flow with symmetric streamlines, such that 

!q-x ,y)  = W , y ) ;  (1 1) 

This is, however, not a dynamical symmetry. 

3. Multiscale technique 
The general technique for finding eddy-viscosity tensors is the so-called multiscale 

technique, also known as homogenization (Bensoussan, Lions & Papanicolaou 1978). 
This technique as well as the heuristic interpretation of the appropriate scalings are 
presented in detail in DF. Here, we shall emphasize only the aspects that are particular 
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to the two-dimensional case, when using stream functions. The starting point is the 
linearized Navier-Stokes equation 

(12) 

We are interested in the dynamics on large-scales assumed to be O(e-l); the 
associated (diffusive) timescale is then O(e?). The space-time variables of the basic 
flow, the so-called periodic fast variables, are denoted x and t. In addition, we 
introduce slow variables, viz. X = ex and T = e2t. As usual, the multiscale expansion 
pretends that fast variables and slow variables are independent. It follows that 

&$ = a, a2$ + J(a2+, 'y) + J(az!P, +I- a 2  a 2 $  = 0. 

a, + a, + evi, a, --f a, + c2 aT, (13) 

where we denote the derivatives with respect to fast space variables by the symbol a and 
those with respect to slow space variables by V. The solution +(x, t ;  X, T )  is sought as 
a series in c:  

where all the functions +(n)  depend apriori on both fast and slow variables. Use of the 
expansion (14) and the rule of decomposition of derivatives (13) in (12) gives a 
hierarchy of equations which are derived in detail in Appendix A. Here, we just make 
some general remarks. All the equations involve the operator A, which is the same as 
d of (12), but restricted to periodic functions (fast variables). Because of the presence 
of fast derivatives on the right in every term of A, constant functions are in its null- 
space. As is usual in singular perturbation theory, A is not invertible. Still, its 
restriction to functions of zero mean value, denoted A as in DF, is invertible at small 
enough Reynolds numbers. Indeed, A is then close to the bi-Laplacian va2 d2, which is 
invertible on functions of zero mean. We must of course limit our investigation to 
Reynolds numbers such that no eigenvalue of A crosses the imaginary axis, since this 
would imply a small-scale instability. We now write the first three members of the 
hierarchy of equations corresponding to O(e0), O($) and O(e2), respectively : 

+ = +(O) + €+(1) + €2$(2) + . . . , (14) 

A$(') = 0, (15) 
A$(') = E , ~  (a, a2 u) V, + ( O ) ,  (16) 
~ 4 ' 2 )  = - 2 4  a, - cs,(az a2 'y) + 2 ~ ~ ~ ( a ~  'y) aj a, + ci,(ai !q a 2  + 4v a, a2] v, tp. (1 7) 

Here, and below, it is understood that partial derivative operators (in fast or slow 
variables) such as a and V act on anything to the right unless immediately preceded by 
an open parenthesis, in which case they act only within the corresponding parenthetical 
group. There is no difference between Greek and Roman indices. All three of the above 
equations, as well as all subsequent equations in the hierarchy are of the form 

Af= g .  (1 8) 

The solvability condition is then ( g )  = 0. It is easily checked that it is satisfied for all 
three of the above equations. This situation is a bit different from the one presented in 
DF. When using a velocity formalism, as in DF, the solvability for the second-level 
equation gives the absence of the AKA-effect, while the solvability of the third-level 
equation gives the eddy viscosity tensor. When using stream functions, the first non- 
trivial solvability condition (absence of AKA-effect) appears at the third level and the 
eddy viscosity at the fourth. 
A quick way of obtaining all the solvability conditions is given in Appendix A. To 

explicitly write the solvability conditions up to O(e4), one needs only the solutions of 
the first three equations (15)-(17). The first one is trivial: $(O) will be in the null-space 
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of A, thus independent of the fast variables. The second and third equations (16) and 
(17), may be solved for $(') and $(') in the restricted class of functions of zero mean, 
since additive constants will not affect subsequent solvability conditions. Since (16) is 
linear and its right-hand side involves the slow variables only through the factor 
V, $('), it follows that 

(19) 
where Q is a suitable vector depending only on the fast space variables. Substituting 
this into (17), we see that the solution of the latter may be written as 

(20) 

$(l) = Q .  V$(O) + ($(l)), 

$(') = Sap V, V, $(O) + Q V ($(')) + ($"'), 

where again the tensor Sap depends only on fast variables. 

solvability of the fourth-order equation is 
Finally, the equation for the large-scale perturbation ($(')) stemming from the 

where the eddy-viscosity tensor is given by 

The oiily non-trivial problem is to calculate Q, and Sap. This requires the solution 
of linear partial differential equations with periodic coefficients. 

4. Determination of the eddy viscosity 
As is standard in homogenization methods, the determination of the transport 

coefficients requires the solution of auxiliary problems formulated solely in terms of the 
fast variables. To calculate the eddy-viscosity tensor, given by (22), we need to know 
the vector Q,(x, t )  and the tensor SaP(x, t),  which depend only on fast variables and 
satisfy 

AQa = 3 ' 9 ,  (23) 
' s a p  = - '',(a, Qp) - ~ i a ( a i  a' W Q, 

+ 2~ij(ai W ('j 'a QP) + Eia(ai u? 
A = a, a2 + ~ ( a ~  ., q + J(a2 Y, 4 - a2 a 2 ,  

+ 44aa a2QB>, (24) 
where (25) 
is the linearized Navier-Stokes operator around the basic flow Y restricted to periodic 
functions of zero mean. Equations (23) and (24) follow immediately from (16), (17), 
(19) and (20). When the basic flow is time-independent, the first term a,a2 in the 
operator A may be omitted. The assumption we made ensures that (23) and (24) have 
unique solutions, which are bounded space-time periodic functions with zero mean, as 
long as the Reynolds number is small enough to prevent instabilities at small scales. 

We shall now describe two very different strategies for solving the auxiliary problems 
(23) and (24). 

4.1. Analytic continuation in the Reynolds number 
Our first method, which is mostly analytic, will be described here only for the case of 
tirne-independent basic flow, although it is easily extended to include time-dependence. 
It follows from (22), (23) and (24) that the only singularities of the eddy-viscosity 
tensor, when the viscosity is varied, originate from lack of invertibility of the linearized 
Navier-Stokes operator A. Indeed, quantities such as Q,  and Sub are obtained by 
solving equations of the form Af= g .  An important consequence of the fact that these 
linearized Navier-Stokes operators are formulated on the bounded domain of 



102 S.  Gama, M .  Vergassola and U.  Frisch 

periodicity is that the eddy viscosity is a meromorphic function of the Reynolds 
number R cc l/v, when the latter is extended to complex values. In other words, its only 
singularities at finite distance are poles. The proof is very simple. We apply to (18) the 
inverse of the bi-Laplacian (which is well-defined on functions of zero mean) 
and use (12) to obtain 

(26) 
where I is the identity and 

(27) 

Hence,fcan become singular only when v is an eigenvalue of B. It is easily checked that 
B is a compact operator in the space of square-integrable periodic functions because 
it has more integrations than differentiations. The meromorphy of the eddy viscosity 
in the inverse viscosity is then a consequence of a classical theorem on the spectrum of 
compact operators (Dunford & Schwartz 1966). 

We now observe that solution of (26) has a straightforward series expansion in 
powers of l/v, namely 

(28) 

where f, = -ap2 iPg, and 

f,,, = a-2a-2[J(a2fn, !q+J(a2Y, fn)] ,  n 2 1. (29) 

(B - vr)j- = 3-2 a-zg, 

BY = a - 2  a-2 { J ( a y  9 + ~ ( a v , ~ ) ) .  

f = f, v-1 +f2 v-2+ . . . +f, v-, + . . .) 

In (28) there is no& term since the mean offvanishes. When g is itself a series in l/v, 
the recursion relation for the f, is an obvious generalization of (29). To calculate Qa, 
the function g is taken to be the right-hand side of (23). To calculate Sap, the function 
g is taken to be the right-hand side of (24), which must itself be expanded in powers of 
l/v. After substitution of (28) in (22), we obtain an expansion for the eddy-viscosity 
tensor 

W 

Va&,, = v&p 4, + c vpn. (30) 
n=l 

The expansion is guaranteed to converge for small enough Reynolds numbers (large 
enough v). The radius of convergence is determined by the singularity (pole) in the 
complex (l/v)-plane nearest to the origin. Beyond the disk of convergence the eddy 
viscosity must be continued analytically. For meromorphic functions, a very robust 
method of analytic continuation is by Pade approximants (Baker 1975). 

4.1. I. Practical implementation by Pade approximants 

that the eddy viscosity is isotropic. We then obtain, instead of (30) 
In this subsection we specialize to basic flow with three- or six-fold symmetry such 

We observe that, by use of (22) and of the recursive relation (29), it is easy to give exact 
expressions for the first few Taylor coefficients vp). For n = 1 and 2 they will be found 
in Appendix C. Observe that the first correction to the molecular viscosity (already 
given in DF) is always positive and has been used in particular to check subsequent 
numerical calculations. As shown by Sivashinsky & Frenkel(l992) this correction can 
be negative for time-dependent flows. 

Obtaining accurate numerical values for a large number of Taylor coefficients is 
particularly simple when the stream-function of the basic $ow is a trigonometric 
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polynomial in the variables x1 and x2, i.e. has a finite number of Fourier harmonics. It 
then follows from the recursion relation (29) that all the f, are trigonometric 
polynomials with increasingly many harmonics. Specifically, let K denote the maximum 
wavenumber (modulus of wave vector) present in the basic stream function Y. Then, 
the largest wavenumber present in the calculation of the nth Taylor coefficient of the 
eddy viscosity is less or equal to (n  + 1) K. We may then calculate the f, by finitely 
truncated Fourier series, provided that the maximum wavenumber is larger than 
(n  + 1) K.  In Fourier space, differentiation and a-' operators are multiplications, while 
products with !P or i3'Yare finite convolution sums. Such a calculation is thus free of 
truncation errors and has only round-off errors (so, it is better to perform it with 64- 
bit arithmetic). 

For simple choices of the basic stream function Y, such as discussed in $ 5 ,  up to 50 
terms in the series for the eddy viscosity are easily obtained, but for the purpose of 
identifying negative eddy viscosities only about half as many are needed. The 
calculation can be further simplified by using the fact that only terms with odd powers 
of v-l are present when the basic flow has symmetrical streamlines (this is proved in 
Appendix E). 

4.2. Spectral method 
We now return to the general case of time-dependent basic flow Y. The unique 
space-time-periodic and zero-mean-value solutions of (23) and (24) can be obtained by 
numerically solving these time-dependent partial differential equations, starting from 
initial data of zero mean value (e.g. from zero) and letting the solution relax to 
convergence. Given the spatial periodicity, we can solve the equations by a (pseudo-) 
spectral method (Gottlieb & Orszag 1977). The details of the spectral method are 
standard. We use a slaved-frog temporal scheme (Frisch, She & Thual 19863) with 
alias-removal. Since the Reynolds number for which we shall obtain negative eddy 
viscosities are not particularly large (typically less than lo), the method is not very 
demanding as far as resolution is concerned. For the cases to be reported in subsequent 
Sections, we have worked with resolutions from 64, to 512, and found the former to 
be always adequate : errors on the eddy viscosity are then about lop4 in absolute terms. 
At the higher resolutions the energy spectra (in Fourier space) always have very 
conspicuous exponentially decaying tails. The actual implementations were running on 
a CM-200. Convergence is achieved in a few hundred to a few thousand time steps, 
depending on the basic flow. For 64' resolution such calculations are well within the 
capability of ordinary workstations. The same numerical method is used to check for 
the possibility of small-scale instabilities. This is done by choosing random initial 
conditions and looking for possible growing modes. A somewhat less reliable method, 
but which requires no additional calculations, for detecting small-scale instabilities is 
to start with zero initial conditions and hope that the right-hand sides of (23) and (24) 
will excite whatever unstable modes there may be. For the case of the 'hexagonal 
decorated flow' described in 5 5,  we have systematically used the former, more reliable, 
method in order to make sure that negative eddy viscosity is present without any small- 
scale instability. 

We finally make some comments on the case of basic flow with three- and six-fold 
rotational symmetry (which ensure isotropy of the eddy viscosity). The spectral method 
can be implemented for arbitrary values of the period L, in x, and the period L, in x2. 
For three- and six-fold symmetry, the Fourier modes should be on a regular triangular 
lattice. This can be done by taking, e.g. L, = 27c and L, = 2n/2/3. The Fourier modes 
are then of the form 

k = (2a+p)e1+,82/3e2, (32) 
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FIGURE 1.  Streamlines (grey-coded) of the ‘single-wavenumber flow’, given by (33), the eddy 
viscosity of which is always positive. 

where e, and e, are the unit vectors in the x1 and xz directions, and where a and p are 
arbitrary-signed integers. To ensure six-fold rotational symmetry, Fourier modes of 
the basic flow Y which can be obtained by rotations of n/3 have the same Fourier 
amplitudes. The amplitude should be real, because the amplitude at the opposite wave 
vectors, which can be obtained by three rotations of n/3, should also be its complex 
conjugate. Thus, only the modes located in the sector of angle n/3 may be chosen 
independently. For three-fold symmetry, the angular sector is again of width n/3, but 
the amplitudes are complex numbers. 

5. Simple flows with isotropic eddy viscosity 
In this Section we consider only time-independent basic flow with six-fold rotational 
symmetry. We shall then calculate the (isotropic) eddy viscosity, using the analytical 
continuation method of $4.1 and the spectral method of $4.2. These methods are 
completely independent; this will thus provide a useful check on our results. 

5.1. Single-wavenumber flows 
The simplest flow with the required parity-invariance and six-fold symmetry has a 
single wavenumber and is unique up to a translation, a rotation and rescaling. It may 
be obtained by setting a = 1 and ,8 = 0 in (32). In the physical space it reads 

( 3 3 )  Y(x,, x,) = cos 2x, +cos (XI + 4 3  xz) + cos (XI - 2 / 3  x,). 

This flow is shown in figure 1 .  Since the flow has symmetrical streamlines, the series 
expansion of the eddy viscosity (31) contains only odd powers of 1 /v  (see Appendix E). 
The Taylor coefficients of vdn for n up to 19 are given in table 1 .  It is seen that the first 
two non-vanishing coefficients 12 = 1 and n = 3 are positive and then the coefficients 
alternate in sign (so that the nearest singularity is on the imaginary axis). The eddy 
viscosity obtained by the [ 10/ 101 diagonal Pad6 approximant (actually [ 5 / 5 ]  in the 
variable l/vz) is shown in figure 2. 

For the same flow, we have calculated the eddy viscosity by the spectral method of 
$4.2 for various values of v. The results are shown on the same figure 2 and agree fully 
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l lv  

FIGURE 2. Eddy viscosity for the ‘single-wavenumber flow’. v,/v is plotted against llv. The 
continuum line is from the Pad6 approximant and the circles from the spectral calculations. 

n ,,(n) 
B 

1 
3 9.375000000 x 
5 -9.745695 153 x 
7 1.521227229 x 
9 -2.758 184968 x lo-* 

11 5.430 174455 x 
13 - 1.125837306~ 
15 2.412329984 x 
17 -5.276340282 x 
19 1.168710794 x 

7.500 000 000 x lo-’ 

21 -2.608521638~ lo-’ 

TABLE 1. Taylor coefficients vg) for the single-wavenumber flow 

with the Pad6 results. Clearly, the ‘single-wavenumber flow’ is not a good candidate 
for obtaining negative eddy viscosities. 

We have also tried single-wavenumber flows with three- rather six-fold rotational 
symmetry, which are linear combinations of (33) and of a similar expression with each 
cos replaced by a sin. No case of negative eddy viscosity was found. 

5.2. The decorated hexagonaljow 
The failure to obtain negative eddy viscosities with single-wavenumber flows may have 
something to do with the first two non-vanishing corrections to the molecular viscosity 
(in powers of the Reynolds number) being positive. The first correction is always 
positive for time-independent flow, but there is no apriori constraint on the subsequent 
ones. We have therefore investigated flows having a few different wavenumbers, trying 
to get the second and the third correction to be negative. This had led us to the flow 
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FIGURE 3. Streamlines of the 'decorated hexagonal flow', given by (34), which has a negative 
eddy viscosity. 

n ,,(n) B 

1 7.500000000 x lo-' 

5 -1.361038366~ 10-1 
7 9.946897685 x 
9 -2.023193057 x 

11 -8.393763844~ 
13 8.520740997 x 
15 -5.293578026 x 
17 4.255837684 x 
19 -4.028466334 x 
21 3.598818877 x 

3 -3.419459887 x lo-' 

TABLE 2. Taylor coefficients vg) for the decorated hexagonal flow 

Y(xl, xz) = -+[cos 2x, +cos (x, + 2/3 xz) +cos (XI - 2/3 x,)] 

+;[cos(4xl+2 2/3xz)+c0s(5x,-~3x,)+c0s(x1-3 43x,)]  

-;[cos(4xl)+cos(2xl+2 2/3xz)+c0s(2x1-2 2/3x,)] 

+;[cos(4x1-2 ~ / ~ X , ) + C O S ( ~ X , + ~ / ~ X ~ ) + C O S ( X ~ + ~  . \ / 3~ , ) ] ,  (34) 

the streamlines of which are shown in figure 3. This flow, which has three distinct 
wavenumbers, will be called ' decorated hexagonal flow '. It again has symmetrical 
streamlines and thus only odd powers of l / u  in the expansion of the eddy viscosity. In 
table 2 we show the Taylor coefficients for the eddy viscosity up to P1. The second and 
third non-vanishing correction to the molecular viscosity is seen to be negative. 
Because this flow achieves very low and actually negative eddy viscosities it is better to 
show the results for the Pad6 approximant ([10/10] diagonal) and the spectral 
calculation in tabular form (table 3 ) .  

The agreement between the Pad6 approximant and the spectral calculations at both 
moderate and high resolution is again remarkable and leaves little doubt that the eddy 
viscosity changes sign when the molecular viscosity drops below v, z 0.58. Note that 
the radius of convergence of the series (31) in powers of l / v  is z 1.1, so that the value 
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V 

I 
0.8 
0.7 
0.6 
0.59 
0.58 
0.57 
0.56 
0.55 

Spectral 642 
V E  

1.348 
0.961 
0.642 
0.134 
0.066 

-0.007 
- 0.085 
-0.169 
-0.259 

Spectral 2562 
V E  

1.348 
0.961 
0.642 
0.134 
0.066 

-0.007 
-0.085 
-0.169 
-0.259 

~ 

Pade 
prediction 

V E  

1.348 
0.961 
0.642 
0.134 
0.966 

- 0.007 
- 0.085 
-0.169 
-0.260 

TABLE 3 .  Eddy-viscosity vE for the decorated hexagonal flow 

for which the eddy viscosity changes sign is well beyond the radius of convergence. 
We have also carefully checked that no small-scale instability develops as long as 
v > 0.549. 

6. How common is negative eddy viscosity? 
Having observed one particular flow with negative eddy viscosity, it is natural to ask 

if this property is exceptional in the class of parity-invariant flow with six-fold 
rotational symmetry. To try and answer this, we have analysed a large number of 
different time-independent flows and in each case varied the molecular viscosity, 
starting from v = 2 and halving it until one of the following happens: (i) the eddy 
viscosity becomes negative, (ii) the eddy viscosity begins to increase, (iii) a small-scale 
instability appears. In the third event, a refined search in between the last two values is 
made. The random basic flows were all Gaussian and thus statistically characterized by 
their energy spectra. The latter were chosen to be of the form k-" with a cutoff at 
K = 7, beyond which the energy spectrum is zero. This search, carried out on about 
500 flows, revealed that around 30 YO of the flows eventually developed a negative eddy 
viscosity, when lowering the molecular viscosity. Specifically, for n between 1 and 3 the 
percentage stayed around 30 (within the statistical scatter inherent to such a 
procedure). For n = 10, which is a very steep spectrum, out of one hundred trials, not 
a single case of negative eddy viscosity was obtained. This is not surprising, since such 
flows have most of their excitation in the lowest-wavenumber modes, and we know that 
the single-wavenumber flow has a positive eddy viscosity. In the course of our 
investigation, we have also found some rather amusing flows with negative eddy 
viscosities, such as the one shown in figure 4. 

We have tried to find a simple rule for guessing if a flow can have negative eddy 
viscosity. Visual inspection of a number of such flows has revealed that they usually 
possess regions of rather closely packed streamlines, such as the roughly circular 
structure encircling the 'gear' in figure 4. So, at least locally, such flows resemble the 
Kolmogorov flow which is known to have a negative (albeit highly anisotropic) eddy 
viscosity. 

Anyway, we conclude that the phenomenon of two-dimensional isotropic negative 
eddy viscosity is quite common. 

We observe that the existence of isotropic negative eddy viscosity is still an open 
problem in three dimensions. The three-dimensional case is also much richer; for 
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FIGURE 4. One of the many Gaussian flows with negative eddy viscosity which has six-fold 
symmetry and a k-' energy spectrum. 

example the eddy viscosity can become complex, in the sense that oscillations are 
permitted (Wirth 1993). 

7. Time-dependent flow 
The spectral method of $4.2 applies equally well to time-dependent basic flow. 

Sivashinsky & Frenkel (1992) have observed that for time-dependent flow the first 
correction to the molecular viscosity in powers of the Reynolds number may be 
negative. This is the case, in particular, for the flow considered in their paper, which 
is 

sin x, - 2 sin kxl sin 
2 (35) 

Their flow, shown in figure 5, has three-fold rotational symmetry and thus an isotropic 
eddy viscosity. We have calculated the latter by the spectral method for various values 
of the Reynolds number R = l/v and of the modulation frequency w .  The sign of the 
results in the (R, w)-plane are shown in figure 6. Sivashinsky & Frenkel did not attempt 
to calculate the eddy viscosity exactly. Instead, they expanded it in powers of R = l / v  
for small R and assumed 6 = wR to be finite. This gave (in our notation) 

Using only the first two terms they obtained in the (R,w)-plane a separatrix between 
negative and positive eddy viscosities. This qualitative feature is common to their low- 
order expansion and to our accurate calculation. On the other hand, there is exact 
quantitative agreement only for small Reynolds numbers when the eddy viscosity is 
dominated by its molecular contribution and thus cannot be negative. At higher 
Reynolds numbers there is some discrepancy, but it does not exceed lo%,  so that the 
low-order Reynolds-number approximation (36) appears to be rather good. 

We saw in $6 that negative eddy viscosity is a very frequent phenomenon with time- 
independent flow. Thus, time-dependence is clearly not needed. 
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FIGURE 5 .  A snapshot of the Sivashinsky & Frenkel (1992) flow. 
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R 

FIGURE 6. Sign of the eddy viscosity for the Sivashinsky & Frenkel (1992) flow. 
R is the Reynolds number and w the modulation frequency. 

7.1. Flows S-correlated in time 
There is an instance, other than low Reynolds numbers, where the eddy viscosity can 
be calculated in explicit analytic form, namely for Gaussian basic flow which is 6 
correlated in time (white noise). To define precisely what we mean, we begin with a 
basic flow Y (not yet &correlated) which is a Gaussian random function of space and 
time with zero mean and correlation function 

(Y(x ,  t )  Y(X' ,  t ' ))  = rdx-xJc' ,  t - q. (37) 
The correlation function Tu is assumed to depend only on x-x' (homogeneity) and 
on t-t' (stationarity), to be even in t-t' (time-reversal symmetry) and to decrease 
sufficiently fast at large space or time separations (mixing). Let 9 be a small expansion 
parameter (chosen independently of the e in the multiscale expansion). We define 
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It is easily seen that, when 7.0, the function Y7 becomes S-correlated in time: 
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lim ( !P7(x, t )  !Pq(x’, t’)) = &(t - t’) T,(x - x’), (39) 

TS(x-x’) r ( ~ - ~ ’ , ~ ) d 7 .  (40) 

rl+o 

41:’ 
In other words, &correlated flows are here obtained as limits of flows with a very 

short correlation time O(y2). This formulation avoids mathematical problems (which 
must otherwise be overcome by using Ito calculus). It also provides us with an 
additional expansion parameter 7 to simplify the solution of the auxiliary problems. 

As we have already stated, the multiscale formalism is essentially the same for 
periodic and random functions, except that the angular brackets ( - ) now denote 
ensemble averages. In particular (22)-(25) remain true. It is shown in Appendix D that 
the auxiliary problems can now be solved exactly in the limit 7+0, thanks to an 
additional multiscale expansion in the time variable. Other techniques for solving 
linear equations with white-noise coefficients could be used as well (see e.g. Brissaud 
& Frisch 1974). 

The final result for the eddy viscosity tensor is given by (D 18) is Appendix D. When 
the basic flow is isotropic, vE = v. Thus, isotropic two-dimensional incompressible 
random flow, with white-noise time-dependence, has an eddy viscosity equal to its 
molecular viscosity. 

Several remarks are now in order. First, we note that AKA-terms (first-order tensors 
in large-scale derivatives) vanish for &-correlated flow, irrespective of parity-invariance. 
Second, we observe that the vanishing of the correction to the molecular viscosity is 
a special property of two dimensions. In higher dimensions, otherwise under the same 
conditions, the correction to v is strictly positive. Third, we observe that the vanishing 
of the correction is already implicitly contained in Kraichnan (1976). In that paper, he 
uses a closure, known as Test Field Model (TFM), involving a relaxation time O,,, for 
triple correlations. It is easily checked that in the S-correlated case, the TMF closure 
is exact with a 8,,, that is a constant. The correction to the molecular viscosity 
(Kraichnan 1976, equation (4.6)) is then found to vanish. Fourth, we observe that the 
eddy viscosity plays an important role in renormalization group calculations (Forster, 
Nelson & Stephen 1977; Fournier & Frisch 1983), which produce particularly non- 
trivial results in two dimensions. In the renormalization formalism, the external driving 
force is 8-correlated, but the resulting flow is not, so that the correction to the 
molecular viscosity does not vanish. 

8. Nonlinear dynamics of mirror-symmetric basic flow 
In subsequent Sections we address the question of the large-scale dynamics, when the 

amplitude of the large-scale flow is not sufficiently small to permit linearization. This 
may happen either because a negative eddy-viscosity instability is amplifying the large- 
scale flow up to the point where nonlinearities are relevant (58.2) or because the initial 
amplitude was taken sufficiently large (58.1). We shall see that there is a basic difference 
between the cases of chiral and non-chiral forcing. In the present Section, we begin with 
the latter. We shall also assume henceforth that the flow has at least six-fold rotational 
symmetry. 
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8.1. The case ofpositive eddy viscosity 
We assume here mirror-symmetry forcing (more precisely, a mirror-symmetric basic 
flow), six-fold rotational symmetry and an eddy viscosity that is positive. Consider the 
Navier-Stokes equation (6) for the perturbation @ to the basic flow Y. We now ask: 
when does the nonlinear term J(8 @, @) become comparable with the eddy-viscosity 
term v,a2a2$? Since the large-scale motion has spatial scale O(e-l), all spatial 
derivatives contribute a factor O(e). Denoting by [$] a typical amplitude of the 
perturbation $, we find that the Jacobian term is O(e4[$I2) and the eddy-viscosity term 
O(e4[@]). These terms are comparable when [ ~ ]  = O(so). In Appendix B (where the 
mirror-symmetry and the chiral cases are handled together), it is shown that the 
multiscale expansion can be modified to incorporate nonlinear terms. This is actually 
rather straightforward because, fortunately, the auxiliary problems to be solved remain 
the same linear equations as before. The equation arising from solvability at order e4 
in the mirror-symmetric case is 

(41) aT v 2 (0) + a y ( v z p ,  p)) = vE vzvzp), 
where 2 denotes the Jacobian in slow (large-scale) variables. The eddy viscosity vE has 
the same expression (22) as in the linear case. The coefficient a is given in Appendix B. 

It may be surprising that a is, in general, not equal to one, since the latter is needed 
to ensure Galilean invariance. As noted by Yakhot, Bayley & Orszag (1986), who 
attribute it to Sivashinsky (1985), Galilean invariance is lost because of the presence of 
an external force. Indeed, when going to a reference frame moving with the velocity u, 
the force Ax, t )  becomes Ax - ut, t). Only a 8-correlated force will stay invariant. Of 
course, Galilean invariance can be easily restored by absorbing the coefficient a into a 
rescaled time variable, as is done in the theory of lattice gases (Frisch et al. 1986a, 
1987~). Actually, it was pointed out by Yakhot et al. (1986) that there is considerable 
analogy between hydrodynamics with small-scale forcing and lattice gases, as far as the 
form of the large-scale equations is concerned. It may be shown that the coefficient a, 
which is the analogue of the Galilean factor in lattice gases, vanishes under certain 
conditions (Gama & Vergassola 1993). Note that the vanishing of the advective 
nonlinearity for the case of the Kolmogorov flow is due to the fact that the large-scale 
flow depends on a single coordinate. Observe that, as long as a =I= 0, it does not matter 
much what its sign may be, since the latter can be changed by just redefining the sign 
of the velocity. We conclude that, in general, the large-scale dynamics of flow with 
positive eddy viscosity is governed by the ordinary two-dimensional decaying 
Navier-Stokes equation, which is known to have regular solutions for all times. 

8.2. The case of negative eddy viscosity 
The case of negative eddy viscosity has already been investigated in detail for the 
Kolmogorov flow (Nepomnyashchy 1976), who showed that when the eddy viscosity 
is marginally negative (i.e. O(c2)), the large-scale dynamics is governed by a one- 
dimensional Cahn-Hilliard equation. In our notation, this equation reads 

(42) 

There is a linearly unstable wavenumber band at large scales and the nonlinearity 
saturates the instability since it tends to bring the eddy viscosity back to positive values. 
In order to obtain the Cahn-Hilliard equation, the approximate scaling (assume spatial 
scales O(l/e)) is €9 for the time variable and 6-l for the large-scale stream function. 

aT @ ( O )  = - v, { (1 - I v, @(0)12) v, @@)} - v;l ?p. 
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When the eddy viscosity is marginally negative, but isotropic, the above picture is 
somewhat modified because, in general, the advective nonlinearity Y(V'@(') ,  y P ) )  does 
not vanish. Hence, the scaling is modified. When the eddy viscosity is negative and 
O(k2), timescales are O(c4)  and the stream function is O(e'), as is revealed by balancing 
nonlinear and negative eddy-viscosity terms. Just as for the Kolmogorov flow, linear 
terms involving two additional space derivatives must be included. Such terms, involve 
six spatial derivatives acting on the large-scale stream function. This raises two 
difficulties. First, the isotropy of sixth-order tensors is not guaranteed by six-fold 
rotational symmetry. The second difficulty is that the term with six spatial derivatives 
need not be dissipative. If it is not, then perturbation theory is not applicable (there is 
a ' first-order ' transition). Fortunately, we found numerically that for the decorated 
hexagonal flow the six-order operator is dissipative and very close to isotropy (the 
discrepancies are about 1 YO). 

Exact isotropy can be ensured if the basic flow has five-fold rotational symmetry. 
This is however not compatible with periodicity: such flows are, at best, quasi-periodic. 
Another way is to work with random homogeneous and isotropic flows. Quasi-periodic 
and random flows present new difficulties. For example, the compactness of the 
operator B defined in (27) may be lost. Such questions are beyond the scope of the 
present paper. 

As long as isotropy holds, the equation for the large-scale flow, which arises from 
solvability at order E', reads (see derivation in Appendix B) 

aT V'+r(W + af(V"("', p)) = -p4 V'V'+(U) -ps v2v2v2p). (43) 

The coefficient a is again due to the lack of Galilean invariance, as discussed in 6 8.1. 
The coefficient ,u4 requires the evaluation of ( ( ? V ~ / C ? I I ) , , ~ , , ~ ,  where u, is the 'critical' value 
for the viscosity at which uE = 0. 

Equation (43), when ,u4 and pa are positive and a =# 0, is equivalent to the 
Navier-Stokes-Kuramoto-Sivashinsky (NSKS) equation. 

The NSKS equation has been studied numerically on a Connection Machine CM-2 
by Gama et (11. (1991). Their findings are briefly summarized here. Up to millions of 
time steps at the resolution 256' and tens of thousands at the resolution 1024' were 
performed. A linear growth phase, a disorganized inverse cascade phase and a 
structured vortical phase were successively observed. In the vortical phase, monopolar 
and multipolar structures were found to proliferate and displayed strongly depleted 
nonlinearities. Similar observations have been made for the forced two-dimensional 
Navier-Stokes equation (Legras, Santangelo & Benzi 1988). Gama et al. (1991) also 
found that after extremely long times (thousands of eddy-turnover times), a 
filamentation phenomenon starts which leads to the abrupt appearance of very fine 
scales. This may be a signal that the NSKS equation is an approximation to the large- 
scale dynamics of the original problem which is not uniform in time. So, eventually, 
higher-order nonlinear terms, may have to be incorporated. 

9. Nonlinear dynamics of chiral flow 
Let us now assume that the force and the basic flow Y are chiral (not mirror- 

symmetric), while still possessing six-fold rotational symmetry. The main consequence 
(proven in Appendix B) is that a new nonlinear term appears. For example, when the 
eddy viscosity is positive, instead of (41), we obtain 

aT V2$(n) + aq3(V? V27,P) V, @(O) + CV, [(v"(@) V ,  g(n)] = vE v2v2+(@. (44) 
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The second term on the left-hand side is the usual Jacobian term, written here with the 
antisymmetric cij tensor in order to bring out that the other nonlinear term does not 
involve such a tensor. The third term is not compatible with mirror symmetry, which 
requires a change in the sign of the stream function. The same ‘chiral term’ must be 
added to (43), when the eddy viscosity is marginally negative. 

A simple example of chiral flow is the decorated hexagonal flow of figure 3 ,  which 
possesses symmetric streamlines, but not mirror symmetry. At the critical value 
v = v, z 0.58, where the eddy viscosity vanishes, this flow has a = 1.88 and c = 0.52. 

The same equation (44) applies also when the force is random homogeneous 
stationary isotropic and chiral. Note however that this rules out Gaussian forces. 
Indeed, in two dimensions, a force of zero divergence may be written in terms of a 
scalar function f i  = e i j a j $ .  If $ is Gaussian and of zero mean, it is completely 
characterized by its correlation function ($(x, t )  $(x’, t’)). The latter, if homogeneous 
and isotropic, is also obviously mirror-symmetric. 

Equation (44) is not a standard problem. For example, it has no energy or enstrophy 
conservation by nonlinear terms, neither is there any need for this, since there is an 
interplay of small-scale and large-scale energy and enstrophy. It is not even clear that 
(44) is well posed for more than a finite time. It is certainly not when the viscous term 
is ignored. Indeed, contrary to what happens for the two-dimensional incompressible 
Euler equation, the solutions of (44) typically blow up after a finite time when the 
viscous term is ignored. To show this, let us define the large-scale vorticity 

2 (w, 
W L S  = -v II. 

and two large-scale velocities 
(45) 

the solution of which blows up after a finite time, when wLs has initially the same sign 
as the coefficient c. 

There are some instances where (44), including the viscous term, can be reduced to 
known problems. The simplest case is when the large-scale flow depends on a single 
coordinate, say XI. The Jacobian term then vanishes and we are left with 

Assuming that @(’) has no uniform component, we obtain 

a, $(o) + iC(v, $(0))2 = V R  v; p n ) .  (50) 

This is the well-known Burgers equation (see e.g. Burgers 1974) written for a velocity 
potential. The ‘Burgers velocity’ has then a single component in the X ,  direction, 
u = V, $(O). Thus, the ‘Burgers velocity’ is obtained from the hydrodynamical large- 
scale velocity 

by a rotation of n/2. 
u = (V, p), - v, ?p) = (0, - v, ?p), (51) 
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Let us now consider the case when the large-scale flow depends only on a radial 
coordinate $(O) = $(’) (R, T )  with R = ($+A‘$, so that the Jacobian term vanishes 
again. Defining 

we obtain (53) 

This equation has the same nonlinearity as the Burgers equation, but a p-dependent 
viscosity. Hence, if we have a large-scale flow initially consisting of nearly circular well- 
separated vortex patches and then let it evolve under the action of the chiral term, the 
patches having a vorticity of the same sign as the coefficient c will be enhanced and 
concentrated, while those of opposite sign will be fattened and attenuated. 

Finally, we remark that Moffatt (1983) has found a chiral effect, a contribution 
proportional to eii, in the eddy-diffusivity tensor D, for a passive scalar. (He refers to 
chiral flow as having a preferred ‘sense of turning’.) This effect does not modify the 
large-scale transport equation, since in the latter the eddy diffusivity is contracted with 
two gradients. Still, there is a contribution of the chiral term to the flux of 
concentration of the passive scalar and this flux could be measurable. 

10. Concluding remarks 
We have shown that in two dimensions negative isotropic eddy viscosity is a very 

common phenomenon, even in time-independent flow. Kraichnan (1976) tried to give 
a phenomenological interpretation of this phenomenon, the existence of which was 
suggested by closure calculations. He used the fact that there exist simple flows, 
depending on just one spatial coordinate, such as the Kolmogorov flow 

(u,,~,) = (l/v)(ysinx,,O), p = const., f= (ysinx,,O), y > 0, (54) 
which have a negative but highly anisotropic eddy viscosity. Such flows can be used as 
local building stones of random homogeneous and isotropic ‘ superflows ’, by slowly 
varying in space and time the parameters of the one-dimensional flows. The problem 
of finding the eddy viscosity of the superflow is then at least as difficult as finding the 
effective diffusivity of a material with periodically or randomly varying diffusivity, a 
problem which in more than one dimensions has no analytical solution (Bensoussan 
et al. 1978). This may be why we have not yet found a convincing phenomenological 
interpretation of isotropic negative eddy viscosity. 

Because isotropic negative eddy viscosity is such a common phenomenon, two- 
dimensional flow with small-scale forcing will often develop large-scale instabilities, 
when the Reynolds number is increased. Just above the threshold of instability, the 
large-scale dynamics is governed by the Navier-Stokes-Kuramoto-Sivashinsky 
equation (43), which is known to produce monopolar and multipolar vortical 
structures with strongly depleted nonlinearities (Gama et al. 199 1). 

More exotic behaviour is expected when the small-scale forcing is chiral so that the 
large-scale equation (44) contains a term that, in special cases, is the same as in the 
Burgers equation. The fate of large-scale vortices will then depend on their cyclonicity, 
one kind being enhanced and the other one attenuated. Observe that in the usual 
Navier-Stokes equation any circular vortex has a vanishing nonlinearity, irrespective 
of its radial vorticity distribution. The determination of the latter, in such instances 
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where it is conjectured to be universal, becomes then a highly non-trivial question 
(Miller 1990; Robert & Sommeria 1991). The presence of an additional chiral 
nonlinearity in the large-scale dynamics may be helpful in selecting the shape of such 
vortices, since the chiral term does not vanish for arbitrary radial dependence. (A 
similar observation can be made about Cahn-Hilliard terms in the mirror symmetric- 
case.) 

The detailed study of such questions is beyond the scope of the present paper. Here, 
we just observe that handedness (chirality) has well-known effects in three-dimensional 
hydrodynamics, where it expresses the lack of parity-invariance. Examples are the 
linear a-effect of magnetohydrodynamics (Steenbeck, Krause & Radler 1966) and the 
linear AKA-effect (Frisch et al. 1987b). In two dimensions, handedness is related to 
mirror-invariance and not to parity-invariance, and so its effects are seen only in 
nonlinear theory. 
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Appendix A. Multiscale technique (linear) 
In this Appendix we derive equation (21) for the dynamics of large-scale 

perturbations sufficiently weak so that we can use the linearized Navier-Stokes 
equation (rewritten here for convenience) : 

&$ = a, az$ + J(az$, u) + J(a2 Y, $1 - a* a2$ = 0. (A 1) 

The solution of (A 1) is now assumed to depend on the fast variables x and t and on 
the slow variables X = ex and T = e't. Derivatives in (A 1) must then be decomposed 
according to 

The solution $ is expanded in powers of 6 :  

ai ++€vi, a, + + € 2 a T .  (A 2) 

7fk = 7p + €$(I) + 2 p  + . . . . (A 3) 

The order in E of the leading term is irrelevant (because the equation is linear); thus $ ( O )  

will be arbitrarily chosen to be O(eo). 
The basic flow Y is assumed to depend only on fast variables, to be periodic in x,, 

x, and t and to have a centre of symmetry. Three- or six-fold rotational invariance will 
be assumed only at a later stage. 

We now derive the first three 'auxiliary' equations (15)-( 17) corresponding to orders 
eo, el and 2. Using (A 2) and (A 3) in (A 1) and identifying terms O(so), we obtain 

A$'') = 0. (A 4) 

Here, A is the linearized Navier-Stokes operator d restricted to functions that have 
the same space-time periodicity as the basic flow Y. Equation (A 4) implies that 1 C / ( O )  

is in the null-space of A. The latter contains only constants. Thus, $ ( O )  depends only 
on slow variables. This fact will considerably simplify all the subsequent algebra, since 
all terms in which $(O) is differentiated with respect to fast variables will disappear. 
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Since we need only terms up to second order in t to derive (1.5)-(17), we expand the 
various operators in .d up to O(E'), using (A 2) and (A 3). We obtain 

ct ~4 - €a, a 2 p )  + €2 ~22, a .  v p  +a, a 2 p q  + 0(€3)), (A 5 )  

+ c 2 { ~ ( a 2 p ,  u) + E,,~ (2p Y) [v, a 2 p )  + 2a, a .  v p ] }  + 0 ( € 3 ) ,  (A 6) 

+ c2[J(a2 Y, $(2)) + Eap(a, a2 u? (v, p))] + o(E3), (A 7) 

(A 8) 

(A 9) 

(A 10) 
Observe that the solvability conditions are trivially satisfied for (A 9) and (A 10) 
because of the presence of fast derivatives everywhere on the left. Thanks to the 
indepeRdence of $-(O) on fast variables, the solution of (A 9) may be written as 

(A 11) 

J ( c ? z ~ ~ / ,  u/> - E J ( a z p ) ,  u> 

J(PY, $)- t[J(?", ?p) +&,,(a, a z ! q  (V, 4'"')] 

v a L  P+- t y [ t  c ? ~  a 2 p  + €2(a2 a2$(2) + 4. v a z p ) ]  + o(e3). 

Collecting in (A +(A 8) terms order O(t') and O(e2), respectively, gives 

A$'" = &,?(a, a'") (V, $ ( O ) ) ,  

A@'" = [ - 2af c?, - + 2 ~ , ~ ( a ~  u/) 3, a, + &,,(a, u/) a2 + 4v 3, a2] V, @(l). 

1cr(l) = Q. V$-'O) + (@(I)), 

where ( - ) denotes space-time averages on fast variables, and Q = (Q,) depends only 
on fast variables and is taken to be the only zero-mean-value solution of 

AQ, = &,,(az c?'"). (A 12) 

(A 13) 

Similarly, and using (A 1 l), the solution of (A 10) reads 

= S,, V, V, $(") + Q * V ($("> + ( $'2'), 

where S,,] is the zero-mean-value solution of 
L 

ASqj = - 2?t(?, Qp) -~ t , (a ,  a2 u? Q/r 

+ 2~tJ(at u? (a, a, Qp)  + &,,(at u? (a2Qe,) + 44a, (A 14) 
We now come back to the solvability conditions. There is a quick way to obtain the 

latter by just decomposing derivatives in (A l), using (A2), and taking averages, 
without yet expanding $Y. For this, we note that by (A 2) 

(2, c z $ )  - 2 a, v y  +>, (A 15) 

(A 16) 

( bl 2 2  a") -+ vc4v2v2 < >. (A 17) 

(A 18) 

(A 19) 

m2$, u ? + ~ ( a ~  ~))-t2~,B([~,(2a.v+~~2)1cr1(ap u?), 

To obtain (A 16) we used 

<J(L $9) = 0, (&,(a, a2 u? (Vp II.) + &,p(V, 3") @/!I u?) = 0. 

c4 v2(@) + E2&,, ((a, ul) (2a,v,,+ Ev2) v, +> = e4vv2v2(@). 
Using (A 15)-(A 17) in (A 1)  and averaging, we obtain 

The solvability conditions corresponding to various orders in E are then obtained by 
inserting (A 3) into (A 19). It is easily checked that the solvability condition at order 
E" involves only $ ( O ) ,  $(l), ..., $ ( n - 2 ) .  

The first non-trivial condition appears at order c3, namely 

E,! ((a,, Q,) (a, !P)) +permutations of a, p, y = 0, 'fa, p, y. (A 20) 
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The symmetrization in (a, @, y )  is needed, because this tensor is contracted with 
V,V,V,$('). If we now assume that the basic flow Y is parity-invariant, i.e. Y is 
invariant under x+-x, then we find from (A 12) that Q changes into -Q, and thus 
(A 20) is automatically satisfied. 

At order e4, we obtain 

aT v z p  + 2Eai ((a, u) (a,v,v,p)) +eat ((ai u) (v2vV, p)) = VV~VZ$(O) .  (A 21) 

Using (A 11) and (A 13) in (A 21) and observing that ($(')) and ($(')) do not 
contribute, we obtain the following closed equations for the (leading-order) large-scale 
perturbation $ ( O )  : 

Here, the eddy-viscosity tensor is given by 

aT v z p )  = vap,,7 v, v, vy v, k(0). 

vapys = vsap 87, - Eai spy ( Q, ai ul> - 2Eai ((a, SJ (ai y? ). 

(A 22) 

(A 23) 

In the isotropic case (e.g. with three- or six-fold rotational invariance), the eddy- 
viscosity tensor reduces to a scalar vE and (A 22) reduces to 

aT $ ( o )  = vE v ~ p ) ,  
vE = v- <Q, (a, W >  - ~ ( a ,  sl1) (a, w>. 

(A 24) 

(A 25) with 

Appendix B. Multiscale technique (nonlinear) 
In this Appendix we derive the various nonlinear large-scale equations discussed in 

908 and 9. Mirror-symmetric and chiral cases will be handled together, because the 
scalings in E are the same. Since different scalings are needed for the cases of positive 
eddy viscosity and marginally negative eddy viscosity, these will be dealt with 
separately (in SOB 1 and B 2, respectively). Since the expansions in the nonlinear case 
are technically not very different from the linear case, already discussed in Appendix 
A, we shall omit some obvious details. The basic equation is the nonlinear 
Navier-Stokes equation for the perturbation $ of the basic flow Y :  

(B 1 )  a, az$  + J(az ul, $1 + J(a2$, Y) + J(az$, $1 = va2 a". 
B. 1. Positive eddy-viscosity (nonlinear theory) 

As seen in $8.1, the leading-order term is O(E'), so we assume 

$ = ?p + €$'I) + €2$(2) + . . . . (B 2) 

The derivatives in (B 1) are again decomposed according to (A 2). The main difference 
with the linear case is the presence of the nonlinear term J(a2$, y9). To obtain the first 
three auxiliary equations (the equivalent of (A 4), (A 9) and (A lo)), it suffices to 
expand .I@'$, $) up to second order in E :  

J(a2$, I+?).>- E~[J(~?'$('), $(')) + cap(a, a'$(')) (V, $"')] + O(e3). (B 3) 

The first two levels of auxiliary equations (A 4) and (A 9) are unchanged. In particular, 
$(') is still given by (A 11). The third level is modified by the extra nonlinearity. Thus, 
instead of (A 13), we now have 

$(" = I& V, V, + Q V ($(')) + ($(')), (B 4) 

(B 5 )  
- 

where A xfl = - Eii (a i  a z Q j  (aj Q,) -cia ai PQ,. 
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As before, Ka depends only on fast derivatives. The solvability conditions are obtained 
as in the linear theory. In addition to (A 15)-(A 17), we must now use 

(J(a", 9)) "-& E2Eap v + eV2) $1 $1) 
+c2&,,,([a,(2a.v+t.vZ) ~ 1 . 1 v , ~ 1 ) + e 3 ( 9 [ ( 2 a . v + e v 2 ) ~ ,  $1). (B 6) 

Here, $ is the Jacobian in slow (large-scales) variables. Consequently, the solvability 
condition (previously (A 19)) requires the right-hand side of (B 6) as an additional term 
on the left-hand side. The solvability condition at order e3 is unchanged when Y, the 
basic flow, is parity-invariant, The solvability condition at order c4 gives now a 
nonlinear equation for the (leading-order) large-scale perturbation $(O) : 

aT V2$Jo,0 + 'Eat (('i Q,J ('y QJ) V, [(Vp $"') (Vy V, $(0))1 
+ 2% ((a, yy,> (4 u)> v, v, [(V, $(O)> (V,  $(0'>1 
+ ,y(V*$(O), $@)) = v , p y , v a v p v y v ,  $@). (B 7) 

Here vapy, is the eddy-viscosity tensor given as before by (A 23). 
We now specialize to the case of six-fold rotational invariance. All fourth-order 

tensors appearing in (B 7) are then isotropic, and the equation can be significantly 
simplified. Let us begin with the second term on the left-hand side of (B 7), which 
involves the tensor 

Observe that 

Thus, the tensor is symmetric in the pairs ( i , y )  and @,r). The most general fourth- 
order tensor with these symmetries and with six-fold rotational invariance is 

((ai Qp) (ay Q,>>. 

<(a iQp) (ayQ,>>  = - ( (a ia ,Qp)Q7)  = -(Qp(aia,Q,>>. 

(B 8) 

(B 9) 

<(a, Qp) ('y QJ> = A ,  aiy ap7 + Az(aip SyT + at, 8,p) 

+ A,(Eig ay, + Ei, ayp + Erg 4, + Ey?/ 4,)> (B 10) 
where A,,  A ,  and A ,  are arbitrary real constants. Observe that the presence of the E- 

terms is permitted as long as mirror symmetry is not assumed. The coefficients A,,  A ,  
and A ,  may be expressed in terms of second-order moments of a, Qp by suitable choices 
of indices. We return to the second term on the left-hand side of (B 7), denoted A.  
Using (B 10) and expanding the slow derivative V ,  which acts on two factors, we can 
write it as A = A(') + A(2)  with 

(B 11) 

(B 12) 

A(l )  = -4A,(V2$'0') (V2$(0)), 

A(2)  = 2A2 y(v"4'"', ? Y O ) )  - 4A, v p '  VV2?pO'. 

To establish (B 1 1 )  and (B 12), we have used the identity 

It follows that 
A = 2A,9(V2$(",  $.'o))-4A,V.[(V$'o')(V2$'n')]. (B 14) 

Now, we turn to the third term on the left-hand side of (B 7), denoted 11. Similar 
manipulations give 

I1 = 4B2 $(V2$(o,0',$(n')-4(B, +B4)V.[(V$(o))(V2$(0))], (B 15) 
where B,, B,, B,, and B, are defined by 

<(a@ Y,) (8, 'u>> = B1 8ip ay, + Bz(aiy apq + sill Spy) 

+ B3(Ety ap, f E p y  8i7) + B4(Ei7 Spy + Ep, 4,), (B 16) 
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which is again a consequence of the various symmetries. Collecting all terms, we finally 
obtain the following large-scale nonlinear equation : 

aT V2$(O) + a ~ ( V z $ ~ o ~ ’ , $ ~ o ~ ) + ~ V ~ [ ( V $ ~ o ~ ) V 2 $ ~ o ~ ]  = Y ~ V ~ V ~ $ ( O ) ,  (B 17) 

where a = 1 +2A2+4B2, (B 18) 

c = -4A3-4(B3+B4). (B 19) 
Note that in the mirror-symmetric (non-chiral) case the coefficient c vanishes. 

B.2. Marginally negative eddy-viscosity (nonlinear theory) 
Let us denote by v, the value of the molecular viscosity v at which vE vanishes for the 
first time when lowering u. Generically, (~u,/au),,, =k 0. If we now take v = v,(1-e2), 
it follows that the eddy viscosity will be negative and O(2). Hence, eddy viscosity terms 
in the large-scale equation will be of the same order as higher-order linear terms 
involving six space derivatives. A dominant-balance argument then indicates that 
spatial scales will be O(cl), temporal scales O(E-~) and the stream function O(e2). Thus, 
we assume 

and set X = ex and T = e4t. Hence, 

@ = €2@(2) + €3@(3) + €4$(4) + . . . , (B 20) 

(B 21) 
Before engaging into full-fledged asymptotics, we observe that since @ starts with O(2) 
terms, the lowest-order equation is obviously 

ai + ai + evi, a, + a, + €4 aT. 

A@(’) = 0. (B 22) 
Thus, $(’) depends only on slow variables. So, below, all terms involving fast 
derivatives acting on @(’) will be omitted. It is easy to see that to obtain all relevant 
auxiliary equations, we must expand to order 2. For this, we use (B 20) and (B 21) to 
obtain : 

a, az@- €3 a, a 2 p  + 4 a t  a2$(4) + 28, a - v@(39 

6 

+ “(at az@(z) + 2a, a .  m p - 1 )  + a, v 2 p - 2 ) )  + 0(€7), (B 23) 
2=5 

J(a“, Y) -+ Ea6(a, lu) ~ € 3  a, a2+(3) 

+ a 3 p 4 )  + 2a, a - v$(3) + v, a2$(3)) 

+ c “ya, az@( l )  + 28, a .  v p )  + v, a s p i )  

+ a, v z p 2 )  + 2a. vv , @(~-2 )  + v, V”(”-”’)] + O(E’), 

6 

z=5 

(B 24) 

tB 25) 

(B 26) 

6 

~ ( a ~  Y, 1c.) - Cap@, a 2  u) c cz(a6 p + v, + ( 2 - - ’ ) )  + 0(€7), 

J(az@, @) -+ e6 [J(az@(3), @(3)) + E,,@, a2$(3)) (vp @“’)] + 0(e7), 

2=3 

v,( 1 - €2) a 2  a2$ -+ v, [e3 a 2  a2$(3) + s4(a2 a2$(4) + 46 - v a2$(3)) 
+ 65(a2 a2$(5) + 4a. v a 2 p  + 48. va . v+(3) 

+ 2yv2$(3) - a 2  p$(3)) 
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Collecting in (B 23)-(B 27) terms O(e3), O(e4), O(e5) and O(e6), we obtain four 
equations of the form Af = g which allow us to determine $(3), yP4), yV5) and $(@. The 
solvability conditions attached to the O(e3) and O ( 8 )  equations are automatically 
satisfied, since their right-hand sides are ' decorated ' with fast derivatives everywhere 
on the left. We now write explicitly $(3), $(4), $(5) and $@). At orders e3 and e4 we 
obtain, respectively 

$(3) = ( $ ( 3 ) )  + Q . v$@), 
$(4) = ($ (4 ) )+  Q s V ( $ ( ~ ) ) +  S,pV,V,$'2'. 

(B 28) 
(B 29) 

Here, Q = (Q,) and (S,,) are the same quantities as in the linear theory, solutions of 
(A 12) and (A 14), respectively, but with v = v,. At order e5 we have 

@5) = ($(5)) +Q.V($(4))+S,pVnVp($(3))+r, , ,VaV,Vr$Cr(2'+ P.V$(2).(B 30) 

The vector P and the tensor (rapy) depend only on fast variables and are the solutions 
of 

AP = - V ,  a2 a2Q, (B 31) 
Arg/jy = - 2at a, S/jy -at  sap Q y  + Eai (az ai u? Sly 

- 2Eij (ai a, Spy) (aj u? - E i j  sap (ai Qy)  ( a j  u? 
- & m i  (azspy) (a, u) - 2 ~ a i  (ap  Qy) (a, u? -&ai (at  u? 8p-y 
+ 4vc a, a2sp, + 4v, a, ap Q~ + 2v, sap aze,. (B 32) 

At order e6 we obtain 

$(6) = ($(')) + Q * V ( $(5))  + Sap V, V, ( $(4)) 

+ rap, V, V, V, ( $(3)) + P. V ( $(3)) 

+ V, V, Vy V, $(2) + W., V, V, yV2) + <,(V, $(2)) (V, $(2)). (B 33) 
The tensor Yap is the same as in SB.1, solution of (B 5) with v = v,. The tensors ZaaY, 
and Wap are the zero-mean-value solutions of 

A wap = &,$(ai a2 Y) pIj - 2cij(ai a, P,) (aj fl  
- E,~(PP~) (a, y) + 4v, a, a2pp - a 2  azs,, - 4v, a, a2Qp (B 35) 

As for the solvability conditions, the intermediate equation playing now the role of 
(A 19) is 

E6 aT v2<$) + e2~,, ([v,(2a - v + ev2) +I [a, q) 
+ +l ([v,(2a. v + EV2) $1 [a, $1) 
+ eZE,p (P,(28. v + eV2) $1 [Vp $1) 
+ €3<~[(2a .  v + m) +, $1) - vc(i - €2) s4v97y$) = 0. (B 36) 

As before, f denotes the Jacobian in slow variables. The first non-trivial solvability 
conditions appears now at order e5, and is satisfied with parity-invariance. At order e6 
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the solvability condition is precisely the vanishing of the eddy viscosity for v = v,. The 
solvability condition at order E' is 

(B 37) 

which is again satisfied with parity-invariance. Finally, at order 2 we obtain a closed 
nonlinear equation for $@), namely 

cap ([v,(2a. v p )  + v 2 p ) l  [ap YJ) = 0, 

'T V2$(') + 2Eai ( (a i  QI) ('y Q J )  Va [(V, $.'2') (Vy V, $(2'>1 
+ 2Eai ((a, Y y J  (ai u?> Va Vp [(Vy $(')) (V, $('))I + $(V2$(2), 9"') 

yapyq = -'&at ((3, WyJ (ai u?> - d a p ~ y i  <P, ai u> - v, aa/j ay,p 

Taby?ss = - 2Eai ((a, z y v t o )  (at u?> - Eai spy  (7yco at ">. 

= 'apyv Va VFVy V, $(') + TxpyqCo Va Vp V y  V, V, Vo $r(2)- (B 38) 

(B 39) 

(B 40) 

Note that (B 38) has the same nonlinearities as (B 7). 
We now assume six-fold rotational invariance. All fourth-order tensors are then 

isotropic, which implies that the nonlinear terms in (B 38) are just those of (B 17). As 
for the tensor Z&,,,ss, since it is contracted with six V ,  we may replace it by its 
completely symmetrized form (one over 6 !  the sum over all the permutations of 
indices). Unfortunately, completely symmetric tensors of sixth order with six-fold 
rotational symmetry are not, in general, isotropic, but contain a two-parameter family 
of anisotropic tensors. 

Here 

When isotropy of all relevant tensors holds, (B 38) reduces to 
aT V2$@) + a$(V 2 p (0 )  , $(O)) + cv - [(vI+VO)) V2$(0)] = -p4 V2V2$(0) -p6 V2V2V2$(a). 

(B 41) 

P4 = X(4 Wll) ( a 2  v))  + (Pl  a 2  y3 + v,, (B 42) 

PS = 2((al z l l l l )  u?> + <7111 ur>. (B 43) 

Here, a and c are given, respectively, by (B 18) and (B 19), and 

Appendix C. Low-order Reynolds-number expansion of the eddy viscosity 
We give here the expressions for the first three non-vanishing coefficients in the 

expression (31) of the eddy viscosity vE in the isotropic case. They are derived by 
successive applications of the recursion relations (29), as explained in $4.1. The 
assumed isotropy enables us to simplify the final expressions. The intermediate algebra 
is not particularly enlightening and will be omitted. The result is (x and y have been 
used instead of x ,  and x, for brevity) 

V E  = v +  v(l)v-l+ d 2 ) r 2  + 0(F3), 
v ( l )  = -1. 2(@, u)a"% u?>-K(', waw, u?>? 
v ( 2 )  = ( ( a ,  v) 

+ 4((azy u) a-2 a-2  J(Y, a-2 a,, v )  
+ 2((a,, u? a-2 u? (a, u?l> 
- 2((ax, Y) a-2 a - 2  [(a2 a, Y) (a-2 a, ~91) 
-s((azzy ~ ) a - 2 a - ~ a - 2 [ ~ ( ~ , a ,  ~ + ~ ( a m ,  u,a2u)]> 

+ s((a,, ~ ) a - ~ a - 2 ~ ( a - 2 a - 2 a , ,  Y, a2v)>. 

(C 1) 

(C 2) 
a-2 [J(a, Y, u/) + ~ ( a ~  Y, a-2 a, y?]) 

(C 3) 

Note that (C 2 )  is already in DF. 
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Appendix D. Flow &-correlated in time 
As explained in $7.1, in the case of white noise, it is convenient to introduce a family 

of basic flows Y7(x ,  t )  depending on a small parameter y. The flows Y, are defined as 

where Y(x ,  t )  is a random function, homogeneous stationary and time-reversal- 
symmetric with correlations decreasing sufficiently fast at infinity. Basic flows 6- 
correlated in time are then obtained as limits of flows with short correlation time. 

We have verified that mostly the same formalism used in the case of deterministic, 
space-time periodic flows remains applicable in the random case with the following 
modifications : (i) since the basic flow depends on 7, then Q, Sap appearing in the eddy- 
viscosity (22) and the latter itself will be functions of 9 (the dependence is omitted for 
conciseness), and have well-defined limits for y+O; (ii) averages ( - )  must be 
interpreted as ensemble averages; (iii) the solutions of auxiliary problems must be in 
a suitable class of functions (see below). 

The auxiliary problems to be solved, already given as (23) and (24), are 

AQ, = eat ai a 2 y 7 ,  

AS,, = - 2a, a, Q, - (ai a 2  Y,,) Q, 

(D 2) 

(D 3) 

(D 4) 

+ 2cij (ai YJ (aj a, Qp) + cia (ai y,) (a2Q,> + 4v a, 
where 

We now take advantage of the presence of the small parameter 7. We introduce the 
'very fast' time variable 7 = t / y z ,  which is even faster than the fast time t. We require 
the solutions of (D2) and (D 3) to be homogeneous with respect to the space 
variables, stationary with respect to t and asymptotically first-order stationary with 
respect to 7, i.e. the average of the solutions become independent of 7, as 7 --f + GO. 

In the two-time formalism involving t and 7, the first auxiliary equation becomes 

A = a, a2+J(az ., YJ +J(azYu,, 0 )  - ya2  a'. 

1 1 1 

9 7 
(at + $ a,) a", + J(azQ,, !iq + - q a v ,  Q,) = 11 a 2  a", + - e,i ai a 2  Y, (D 5 )  

where Y = Y(x ,  7). The solutions Q = Q(x, 7, t )  is sought as a series in 7: Q = 
Q(') + ye(') + 7zQ(2) + . . ., where the upper index now indicates the order in 7. Order- 
1/y2 contributions from (D 5) give 

a , a y p  = 0. (D 6 )  

Hence, Qfo) is independent of the very fast time 7. Order-l/T contributions from 
(D 5 )  give 

a, a";) = e,i ai a 2  Y. (D 7) 

Hence 

It is easily checked that adding a 7-independent term of zero mean value and dependent 
on the history of Y prior to t = 0 makes no difference in what follows. 
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Similarly, for the quantities S,,, we find that S$ is independent of 7 and 

Let us now consider all the non-trivial solvability conditions encountered in the 
multiscale expansion. As in the deterministic case, the equation expressing the absence 
of an AKA-effect (solvability of third order in e) is 

(D 10) 
In the main body of the paper, we have to assume parity-invariance to ensure the 
vanishing of this term. With white-noise time-dependence, (D 10) is automatically 
satisfied. Since ~ + 0 ,  it suffices to check the vanishing of the O ( l / q )  and the O(vo) 
contributions from (D 10). The former vanishes because Q") is independent of the very 
fast time and (ul> = 0. As for the latter, it involves 

( l / $  eai ((a, Q,) (ai !P)) +permutations of a, p, y = 0, Va,  p, y. 

Comparison of (D 13) and (D 15) shows that R,, = 0. Thus, the solvability condition 
(D 10) is satisfied. What we have shown is actually the absence of the AKA-effect for 
&correlated flows, irrespective of parity-invariance (Frisch et al. 19873). 

The next non-trivial solvability condition is the one that gives the eddy viscosity (21), 
which in the notation of this Appendix reads 

(D 16) 

with v a p y ~  = v a , p a y < - ( 1 / ~ ) ~ a i  d p y ( Q < a i  ul>-(2/~)e,i ((a,Sy<)(ai u>>. (D 17) 

a T  v2<$.'o'> = Va,,, v, v, v, v, < @ ( O )  >, 

It is now easily shown that the eddy-viscosity tensor has a finite limit, as 7 + 0. The only 
'dangerous' terms are those which might be O(l/a), but they vanish because the 
leading contributions to Q, and Sap. are independent of the very fast variable and 
because (u> = 0. The O(yo) terms give a finite eddy viscosity tensor: 

f r n  

vapy< = VS,, a,, + ;a,, < V X ,  s) w,, - a, "1 w, 0) > ds 

+m 

+ 2 I-, ( W ,  s> a, ap (3, a$-' - a,,) W ,  0)) ds. (D 18) 
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The terms expressing the effect of the small-scale flow give two contributions with 
opposite signs. If the small-scale flow is sufficiently anisotropic, the eddy viscosity 
tensor can have negative eigenvalues, corresponding to directions of amplification of 
the large-scale perturbation. However, in the isotropic case, it is easily shown that the 
two contributions cancel. As a consequence, the eddy viscosity is exactly equal to the 
molecular viscosity. 

Essentially the same method as used in this Appendix can be applied to calculate the 
eddy viscosity of a D-dimensional small-scale velocity field v(x, t )  which is &correlated 
in time. The expression of the eddy viscosity tensor appearing in the equations for the 
large-scale velocity field is 

vapr< = V%/j a,, + &< (up (x, 4 q x ,  0)) ds 1:: 
-I+ ( g X ,  3) a,a5a-2uy(x, 0)) ds- (u,(x, 3) agaca-2qX, 01) ds. (D 19) 1:: 

In the isotropic case, this expression reduces to 

where F is the constant appearing in the correlation function 

(v(x, t ) *v(x,O))  = FS(t). (D 21) 

Note that the dependence of v E  on F can be captured by an argument h la Maxwell, of 
the sort used in kinetic theory to derive the expression of the viscosity in a model where 
the particles are scattered elastically and isotropically. The D-dependent factor, which 
tends monotonically to one for D tending to infinity, can be traced back to 
incompressibility. In D = 2, we recover the result vE = v. For any dimension D > 2, 
the contribution of the small-scale flow to the eddy viscosity is positive in the isotropic 
case. 

Appendix E. Flow with symmetric streamlines 
In this Appendix, we shall consider static (time-independent) basic flow leading to 

an isotropic eddy-viscosity tensor and having mirror-symmetric streamlines. The 
Navier-Stokes equation being rotation-invariant, without loss of generality, we may 
assume that 

v - x, v) = w, Y ) .  (E 1) 

We shall show that vE is an odd function of v. Hence, the expansion of v E / v  in powers 
of 1 / v  will contain only even powers. 

In order to calculate the eddy viscosity in the isotropic case, it is enough to consider 
the component vllll, which involves the 'fast' functions Q,  and S,, introduced in 54. 
The equation for Q,  is 

(E 2) 

This equation is invariant under the operations of mirror symmetry and simultaneous 
changes of sign of the viscosity and of Q,. Specifically, the equation is invariant under 

AQ, = ay a2 'Y. 

XH-X, ,v+-+y, Q,H-Q,, V H - V .  (E 3) 
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Note that changing the sign of the viscosity would be a bad idea for the time-dependent 
problem, but is quite harmless in the time-independent case. 

Let us now consider the equation for Sll: 

AS11 = - 2(ay W azz Q 1 +  2(a, u'? azy Q1- (ay u/) a2Q1 + (a, a2W Q 1 +  4v 3, a2Q1. (E 4) 
Using the above symmetry properties of Q,, it is easy to verify that the equation is 
invariant under 

From (A 25),  we have 

X H - x ,  y w y ,  S,,t-,S,,, v w - v .  (E 5 )  

It follows from the symmetries of the functions Q, and Sll, that the right-hand side of 
(E 6 )  is an even function of v. This completes the proof. 
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